详解C语言整数和浮点数在内存中的存储

 更新时间:2024年03月21日 10:10:50   作者:李白同学  
这篇文章主要介绍了C语言整数和浮点数在内存中是如何存储的,文中有详细的代码示例供大家参考,对大家了解学习C语言整数和浮点数在内存中的存储有一定的帮助,需要的朋友可以参考下
(福利推荐:【腾讯云】服务器最新限时优惠活动,云服务器1核2G仅99元/年、2核4G仅768元/3年,立即抢购>>>:9i0i.cn/qcloud

(福利推荐:你还在原价购买阿里云服务器?现在阿里云0.8折限时抢购活动来啦!4核8G企业云服务器仅2998元/3年,立即抢购>>>:9i0i.cn/aliyun

1. 整数在内存中的存储

整数的2进制表示方法有三种,即原码、反码和补码。

有符号的整数,三种表??法均有符号位和数值位两部分,符号位都是?0表?“正”,?1表?“负”,最?位的?位是被当做符号位,剩余的都是数值位。

正整数的原、反、补码都相同。

负整数的三种表示方法各不相同。

原码:直接将数值按照正负数的形式翻译成?进制得到的就是原码。

反码:将原码的符号位不变,其他位依次按位取反就可以得到反码。

补码:反码+1就得到补码。

对于整型来说:数据存放内存中其实存放的是补码。

2. 大小端字节序和字节序判断

当我们了解了整数在内存中存储后,我们调试看?个细节:

#include <stdio.h>
 
int main()
{
	int a = 0x11223344;
 
	return 0;
}

调试结果:

调试的时候,我们可以看到在a中的 0x11223344 这个数字是按照字节为单位,倒着存储的。

这是为什么呢?

2.1 什么是大小端?

其实超过?个字节的数据在内存中存储的时候,就有存储顺序的问题,按照不同的存储顺序,我们分为?端字节序存储和?端字节序存储,下?是具体的概念:
大端(存储)模式:

是指数据的低位字节内容保存在内存的高地址处,而数据的高位字节内容,保存在内存的低地址处。

小端(存储)模式:
是指数据的低位字节内容保存在内存的低地址处,而数据的高位字节内容,保存在内存的高地址处。

2.2 为什么有大小端?

为什么会有大小端模式之分呢?

这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着?个字节,?个字节为8bit位,但是在C语言中除了8bit的 char 之外,还有16bit的 short 型,32bit的 long 型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于?个字节,那么必然存在着?个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式

例如:?个 16bit short x ,在内存中的地址为 0x0010x 的值为 0x1122 ,那么0x11 为高字节, 0x0022 为低字节。对于大端模式,即 内存地址0x0010 中,就将 0x11 放在低地址中,0x0022 放在?地址中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而KEIL C51 则为大端模式。很多的ARM,DSP都为?端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。

题目:设计一个程序来判断当前机器的字节序。

#include <stdio.h>
int check_sys()
{
	int i = 1;
	return (*(char*)&i);
}
 
int main()
{
	int ret = check_sys();
	if (ret == 1)
	{
		printf("小端\n");
	}
	else
	{
		printf("大端\n");
	}
	return 0;
}

运行结果:

3. 浮点数在内存中的存储

常?的浮点数:3.14159、1E10等,浮点数家族包括: float、double、long double 类型。浮点数表?的范围: float.h 中定义。

我们来看看下面一段代码:

#include <stdio.h>
 
int main()
{
	int n = 9;
	float* pFloat = (float*)&n;
 
	printf("n的值为:%d\n", n);
	printf("*pFloat的值为:%f\n", *pFloat);
 
	*pFloat = 9.0;
 
	printf("num的值为:%d\n", n);
	printf("*pFloat的值为:%f\n", *pFloat);
 
	return 0;
}

运行结果:

为什么我们会得到这么奇怪的结果呢?下面我们看看浮点数是如何存储的,就能够解释的通了。

3.1 浮点数的存储

上面的代码中, n 和 *pFloat 在内存中明明是同?个数,为什么浮点数和整数的解读结果会差别这么大?

要理解这个结果,?定要搞懂浮点数在计算机内部的表示方法。

根据国际标准IEEE(电?和电子工程协会)754,任意?个?进制浮点数V可以表示成下面的形式:

V=(-1)^S*M*2^E

(-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数

• M表示有效数字,M是大于等于1,小于2的

2^E 表示指数位

举例来说:
?进制的5.0,写成?进制是 101.0 ,相当于 1.01×2^2
那么,按照上?V的格式,可以得出S=0,M=1.01,E=2。

?进制的-5.0,写成?进制是 -101.0 ,相当于 -1.01×2^2 。那么,S=1,M=1.01,E=2。

IEEE 754规定:

对于32位的浮点数,最?的1位存储符号位S,接着的8位存储指数E,剩下的23位存储有效数字M对于64位的浮点数,最?的1位存储符号位S,接着的11位存储指数E,剩下的52位存储有效数字M

3.1.1 浮点数存的过程

IEEE754对有效数字M和指数E,还有?些特别规定。

前?说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中 xxxxxx 表??数部分。

IEEE754规定,在计算机内部保存M时,默认这个数的第?位总是1,因此可以被舍去,只保存后?的xxxxxx部分。?如保存1.01的时候,只保存01,等到读取的时候,再把第?位的1加上去。这样做的?的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第?位的1舍去以后,等于可以保存24位有效数字。

?于指数E,情况就?较复杂。

?先,E为?个?符号整数(unsigned int)

这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存?内存时E的真实值必须再加上?个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。?如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。

3.1.2 浮点数取的过程

指数E从内存中取出还可以再分成三种情况:

E不全为0或不全为1

这时,浮点数就采?下?的规则表?,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第?位的1。

?如:0.5的?进制形式为0.1,由于规定正数部分必须为1,即将?数点右移1位,则为1.0*2^(-1),其阶码为-1+127(中间值)=126,表?为01111110,?尾数1.0去掉整数部分为0,补?0到23位00000000000000000000000,则其?进制表?形式为:

0 01111110 00000000000000000000000

E全为0

这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第?位的1,?是还原为0.xxxxxx的?数。这样做是为了表?±0,以及接近于0的很?的数字。

0 00000000 00100000000000000000000

E全为1

这时,如果有效数字M全为0,表?±?穷?(正负取决于符号位s);

0 11111111 00010000000000000000000

好了,关于浮点数的表?规则,就说到这?。

3.2 题目解析

以上就是详解C语言整数和浮点数在内存中的存储的详细内容,更多关于C语言整数和浮点数存储的资料请关注程序员之家其它相关文章!

相关文章

  • C语言 array数组的用法详解

    C语言 array数组的用法详解

    数组是指一组数据的集合,(容器)数组中的每个数据称为元素。在Java中,数组也是Java对象。数组中的元素可以是任意类型(包括基本类型和引用类),但同一个数组里只能存放类型相同的元素
    2021-10-10
  • C++11 并发指南之std::thread 详解

    C++11 并发指南之std::thread 详解

    这篇文章主要介绍了C++11 并发指南之std::thread 详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-02-02
  • c++二叉树的几种遍历算法

    c++二叉树的几种遍历算法

    c++二叉树的几种遍历算法,需要的朋友可以参考一下
    2013-02-02
  • C++初阶学习之模板进阶

    C++初阶学习之模板进阶

    这篇文章主要为大家介绍了C++模板进阶,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
    2022-01-01
  • C++设计模式之模板方法模式

    C++设计模式之模板方法模式

    这篇文章主要介绍了C++设计模式之模板方法模式,本文讲解了什么是模板方法模式、模板方法模式的UML类图、模板方法模式的使用场合等内容,需要的朋友可以参考下
    2014-10-10
  • 快速模式匹配算法(KMP)的深入理解

    快速模式匹配算法(KMP)的深入理解

    本篇文章是对快速模式匹配算法(KMP)进行了详细的分析介绍,需要的朋友参考下
    2013-05-05
  • C++使用opencv调用级联分类器来识别目标物体的详细流程

    C++使用opencv调用级联分类器来识别目标物体的详细流程

    所谓级联分类器其实就是把分类器按照一定的顺序联合到一起,下面这篇文章主要给大家介绍了关于C++使用opencv调用级联分类器来识别目标物体的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
    2022-05-05
  • C++?this原理与可变参数及友元函数友元类分步详解用法

    C++?this原理与可变参数及友元函数友元类分步详解用法

    可变参数模板(variadic?templates)是C++11新增的强大的特性之一,它对模板参数进行了高度泛化,能表示0到任意个数、任意类型的参数,这篇文章主要介绍了C++?this原理与可变参数及友元函数友元类
    2022-11-11
  • C# interface与delegate效能比较的深入解析

    C# interface与delegate效能比较的深入解析

    本篇文章是对C#中interface与delegate的效能比较进行了详细的分析介绍,需要的朋友参考下
    2013-05-05
  • C语言深入分析递归函数的实现

    C语言深入分析递归函数的实现

    递归(recursive)函数是“自己调用自己”的函数,无论是采用直接或间接调用方式。间接递归意味着函数调用另一个函数(然后可能又调用第三个函数等),最后又调用第一个函数。因为函数不可以一直不停地调用自己,所以递归函数一定具备结束条件
    2022-04-04

最新评论

?


http://www.vxiaotou.com